产品分享社区
声明:网站上的服务均为第三方提供,请用户注意甄别服务质量
LigaAI受邀参加2022亚马逊云科技中国峰会,并发表了题为「利用亚马逊云科技AI/ML服务开启新一代智能研发协作的大门」的主题演讲。聚焦数据驱动,本文将与大家分享「数据驱动+AI+研发协作」模式下的创新火花。
这个问题可以从开发团队、管理者和协作工具三个维度解读。
以上三方面原因综合导致研发效能提升困难。
从企业内部看,数据驱动的研发协作等于全面提效。通过数据驱动,LigaAI希望达成以下目标:
最后,全面提升业务敏捷性。
ToB SaaS企业内部提效最终要表现在外部市场。从SaaS客户的视角看,数据驱动的研发协作意味着产品竞争力增强。
下图的金字塔自上而下是一个由虚转实的过程,四层内容分别代表愿景、目标、实施和数据利用。
下面以LigaAI为例,展开分享如何按照金字塔步骤,搭建数据驱动型企业。
数据驱动是一种理念、战略。企业需要先在内部达成统一的认识,形成自上而下的、一致的数据愿景。
确定愿景后,定义阶段性目标。LigaAI聚焦研发协作,当前阶段最主要的目标就是企业效能提升,那么「企业效能提升」就是数据驱动的目标。
以下是一些推荐的效能目标。
明晰目标后,就可以实施。LigaAI先搭建了一个最小化的可扩展数据架构(下图是简化版的核心架构图),从左至右分别是数据源、数据处理、数据存储和数据服务。
LigaAI的数据源包括Aurora关系型数据,以及非结构化的文档数据、日志数据、队列数据等;
根据业务情况,数据源处理分为实时和离线处理:实时数据处理一般使用DataSync服务,而非实时数据则采用传统的ETL程序进行处理;
所有处理好的数据会统一放到基础的数据存储平台,LigaAI选择的是DocumentDB和S3 ;
最后,数据服务分为两个部分:已经处理好的数据,通过查询服务直接对内部、外部应用提供接口;
与AI相关的服务,LigaAI以SageMaker为核心,搭建了一套AI工作流程,并实现AI数据训练、模型发布、模型部署等自动化处理。
将架构和平台应用结合,构建数据驱动的正向循环。
LigaAI的数据驱动正循环以团队为核心,团队在LigaAI平台上使用产品并产生数据、数据驱动算法、算法改进平台。平台、数据、算法三者相互驱动,形成「效率提升内循环」,这是对平台客户的价值;
在企业内部,LigaAI形成了以产品、客户体验、反馈池、研发迭代为主体的「价值滚动外循环」。
内外两个循环共同组成我们的价值飞轮,最终提升产品竞争力。
下面是一组LigaAI构建数据驱动型企业的效益数据。
整体而言,LigaAI帮助诸多企业成功实现了业务协同、降本增效的大目标。
以「数据+AI」为核心的下一代研发协作,能够帮助企业完成更多的任务:让机器做繁琐重复的工作,将人回归到本职角色专注创造。减少琐事和干扰事项的打扰,让开发者体验沉浸式工作,让专注激发、释放更多的创造力和生产力。